Nous avons déjà étudié certaines règles et définitions importantes pour les logarithmes. Vous apprendrez maintenant trois règles supplémentaires qui seront utiles lors de la résolution d'équations logarithmiques. Avec les mêmes restrictions pour #\blue{a}# et #\green{b}#, #\purple{c}# doit également être positif.
\[\begin{array}{rcl}\log_{\blue{a}}\left(\green{b}\right)+\log_{\blue{a}}\left(\purple{c}\right)&=&\log_{\blue{a}}\left(\green{b}\cdot \purple{c}\right)\end{array}\]
Exemple
\[\begin{array}{lccr}\log_\blue{3}\left(\green{6}\right)+\log_\blue{3}\left(\purple{\sqrt{3}}\right)&=&\log_\blue{3}\left(\green{6}\purple{\sqrt{3}}\right)\end{array}\]
Notez que \begin{array}{rcl}\blue{a}^{\log_\blue{a}\left(\green{b}\right)+\log_\blue{a}\left(\purple{c}\right)}&=&\blue{a}^{\log_\blue{a}\left(\green{b}\right)}\cdot \blue{a}^{\log_\blue{a}\left(\purple{c}\right)}\\&=&\green{b}\cdot \purple{c}\\&=&\blue{a}^{\log_\blue{a}\left(\green{b}\cdot \purple{c}\right)}\end{array} Donc \[\log_\blue{a}\left(\green{b}\right)+\log_\blue{a}\left(\purple{c}\right) = \log_\blue{a}\left(\green{b}\cdot \purple{c}\right).\]
Exemple
# \begin{array}{rcl}\blue{3}^{\log_\blue{3}\left(\green{6}\right)+\log_\blue{3}\left(\purple{\sqrt{3}}\right)}&=&\blue{3}^{\log_\blue{3}\left(\green{6}\right)}\cdot \blue{3}^{\log_\blue{3}\left(\purple{\sqrt{3}}\right)}\\&=&\green{6}\purple{\sqrt{3}}\\&=&\blue{3}^{\log_\blue{3}\left(\green{6}\purple{\sqrt{3}}\right)}\end {array} # \[\log_\blue{3}\left(\green{6}\right)+\log_\blue{3}\left(\purple{\sqrt{3}}\right) = \log_\blue{3}\left(\green{6} \purple{\sqrt{3}}\right).\]
\[\begin{array}{rcl}\log_{\blue{a}}\left(\green{b}\right)-\log_{\blue{a}}\left(\purple{c}\right)&=&\log_{\blue{a}}\left(\frac{\green{b}}{ \purple{c}}\right)\end{array}\]
Exemple
\[\begin{array}{lccr}\log_\blue{2}\left(\green{8}\right)-\log_\blue{2}\left(\purple{2}\right)&=&\log_\blue{2}\left(4\right)\end{array}\]
Notez que \begin{array}{rcl}\blue{a}^{\log_\blue{a}\left(\green{b}\right)-\log_\blue{a}\left(\purple{c}\right)}&=&\dfrac{\blue{a}^{\log_\blue{a}\left(\green{b}\right)}}{ \blue{a}^{\log_\blue{a}\left(\purple{c}\right)}}\\&=&\dfrac{\green{b}}{\purple{c}}\\&=&\blue{a}^{\log_\blue{a}\left(\frac{\green{b}}{\purple{c}}\right)}\end{array}
Donc \[\log_\blue{a}\left(\green{b}\right)-\log_\blue{a}\left(\purple{c}\right)=\log_\blue{a}\left(\frac{\green{b}}{\purple{c}}\right).\]
Exemple
# \begin{array}{rcl}\blue{2}^{\log_\blue{2}\left(\green{8}\right)-\log_\blue{2}\left(\purple{2}\right)}&=&\dfrac{\blue{2}^{\log_\blue{2}\left(\green{8}\right)}}{ \blue{2}^{\log_\blue{2}\left(\purple{2}\right)}}\\&=&\dfrac{\green{8}}{\purple{2}}\\&=&\blue{2}^{\log_\blue{2}\left(\frac{\green{8}}{\purple{2}}\right)}\end {array} # \[\log_\blue{2}\left(\green{8}\right)-\log_\blue{2}\left(\purple{2}\right)=\log_\blue{2}\left(\frac{\green{8}}{\purple{2}}\right)=\log_\blue{2}\left(4\right).\]
\[\begin{array}{rcl}\purple{n}\cdot \log_{\blue{a}}\left(\green{b}\right)&=&\log_{\blue{a}}\left(\green{b}^\purple{n}\right)\end{array}\]
Exemple
\[\begin{array}{lccr}\purple{3}\cdot \log_\blue{2}\left(\green{4}\right)&=&\log_\blue{2}\left(\green{4}^\purple{3}\right)\\&=&\log_\blue{2}\left(64\right)\end{array}\]
Notez que \begin{array}{rcl}\blue{a}^{\purple{n}\cdot \log_\blue{a}\left(\green{b}\right)}&=&\left(\blue{a}^{\log_\blue{a}\left(\green{b}\right)}\right)^\purple{n}\\&=&\green{b}^\purple{n}\\&=&\blue{a}^{\log_\blue{a}\left(\green{b}^\purple{n}\right)}\end{array} Donc \[\purple{n}\cdot \log_\blue{a}\left(\green{b}\right) = \log_\blue{a}\left(\green{b}^\purple{n}\right).\]
Exemple
#\begin{array}{rcl}\blue{2}^{\purple{3}\cdot \log_\blue{2}\left(\green{4}\right)}&=&\left(\blue{2}^{\log_\blue{2}\left(\green{4}\right)}\right)^\purple{3}\\&=&\green{4}^\purple{3}\\&=&\blue{2}^{\log_\blue{2}\left(\green{4}^\purple{3}\right)}\end {array} # \[\purple{3}\cdot \log_\blue{2}\left(\green{4}\right) = \log_\blue{2}\left(\green{4}^\purple{3}\right)=\log_\blue{2}\left(64\right).\]
À l'aide de ces règles, nous pouvons résoudre plus de questions avec des logarithmes.
Simplifiez l'expression suivante sous forme d'un seul logarithme.
#4-2\cdot\log_{3}\left(2\right)#
#\log_3({{81}\over{4}})#
\(\begin{array}{rcl}
4-2\cdot\log_{3}\left(2\right)&=&\log_3\left(3^4\right)-2\cdot\log_3\left(2\right)\\
&&\blue{b=\log_a\left(a^b\right)}\\
&=&\log_3\left(81\right)-2\cdot\log_3\left(2\right)\\
&&\blue{\text{calcul de \(3^4\)}}\\
&=&\log_3\left(81\right)-\log_3\left(2^2\right)\\
&&\blue{c\cdot\log_a\left(b\right)=\log_a\left(b^c\right)}\\
&=&\log_3\left(81\right)-\log_3\left(4\right)\\
&&\blue{\text{calcul de \(2^2\)}}\\
&=&\log_3\left(\frac{81}{4}\right)\\
&&\blue{\log_a\left(b\right)-\log_a\left(c\right)=\log_a\left(\frac{b}{c}\right)}\\
\end{array}\)