Integration: The definite integral
Definite integral
Assume that #\orange F# is an antiderivate function of the function #\blue f#. The definite integral of #\blue f# with lower bound #a# and upper bound #b# is defined as:
\[\int_a^b \blue f(x) \; \dd x = \orange F(b) - \orange F(a)\]
In worked out solutions we often use the notation #\left[\orange F(x)\right]_a^b#. This is short for #\orange F(b) - \orange F(a)#.
Example
#\begin{array}{rcl}\displaystyle \int_0^3 \blue{x^2} \; \dd x &=& \left[\orange{\frac{1}{3}x^3}\right]_0^3\\ &=& \frac{1}{3} \cdot 3^3-\frac{1}{3} \cdot 0^3\\ &=& 9-0 \\ &=&9 \end{array}#
#0#
Definite integrals are calculated with the following formula:
\[\displaystyle \int_{a}^{b} f(x) \,\dd x = F(b) - F(a)\]
Thus, in order to calculate a definite integral, we first need to determine the antiderivative of the function:
\[\begin{array}{rcl}
F(x) &=&\displaystyle \int f(x) \; \dd x \\
&&\phantom{xxx}\blue{\text{definition of the antiderivative}}\\
&=&\displaystyle \int 7 x \; \dd x \\
&&\phantom{xxx}\blue{\text{substituted }f(x)=7 x \text{ into the equation}}\\
&=&7\cdot \displaystyle\int x\,\dd x\\
&&\phantom{xxx}\blue{\text{applied the constant multiple rule: }\displaystyle \int cx^n \; {\dd}x = c\cdot \displaystyle \int x^n\;{\dd}x \text{ with }c=7}\\
&=&7 \left(\displaystyle \cfrac{x^2}{2}+ C\right)\\
&&\displaystyle \phantom{xxx}\blue{\text{applied the reverse power rule:} \int x^{n} \; \dd x = \displaystyle\cfrac{x^{n+1}}{n+1} + C \text{ with }n=1}\\
&=&\displaystyle \frac{7}{2} x^2 + C\\
&&\phantom{xxx}\blue{\text{simplified}}\\
&=&\displaystyle \frac{7}{2} x^2\\
&&\phantom{xxx}\blue{\text{omitted the constant of integration}}\\
\end{array}\]
Now that the antiderivative is known, the definite integral can be calculated:
\[\begin{array}{rcl}
\displaystyle \int_{a}^{b} f(x) \,\dd x&=& F(b) - F(a)\\
&&\phantom{xxx}\blue{\text{definition of a definite integral}}\\
\displaystyle \int_{-4}^{4} 7 x \,\dd x&=&\displaystyle \left(\frac{7}{2} (4)^2\right) - \left(\frac{7}{2} (-4)^2\right) \\
&&\phantom{xxx}\blue{\text{substituted the boundary values into the antiderivative}}\\
&=&\displaystyle56-56\\
&&\phantom{xxx}\blue{\text{simplified}}\\
&=&\displaystyle 0\\
&&\phantom{xxx}\blue{\text{simplified}}
\end{array}\]
Definite integrals are calculated with the following formula:
\[\displaystyle \int_{a}^{b} f(x) \,\dd x = F(b) - F(a)\]
Thus, in order to calculate a definite integral, we first need to determine the antiderivative of the function:
\[\begin{array}{rcl}
F(x) &=&\displaystyle \int f(x) \; \dd x \\
&&\phantom{xxx}\blue{\text{definition of the antiderivative}}\\
&=&\displaystyle \int 7 x \; \dd x \\
&&\phantom{xxx}\blue{\text{substituted }f(x)=7 x \text{ into the equation}}\\
&=&7\cdot \displaystyle\int x\,\dd x\\
&&\phantom{xxx}\blue{\text{applied the constant multiple rule: }\displaystyle \int cx^n \; {\dd}x = c\cdot \displaystyle \int x^n\;{\dd}x \text{ with }c=7}\\
&=&7 \left(\displaystyle \cfrac{x^2}{2}+ C\right)\\
&&\displaystyle \phantom{xxx}\blue{\text{applied the reverse power rule:} \int x^{n} \; \dd x = \displaystyle\cfrac{x^{n+1}}{n+1} + C \text{ with }n=1}\\
&=&\displaystyle \frac{7}{2} x^2 + C\\
&&\phantom{xxx}\blue{\text{simplified}}\\
&=&\displaystyle \frac{7}{2} x^2\\
&&\phantom{xxx}\blue{\text{omitted the constant of integration}}\\
\end{array}\]
Now that the antiderivative is known, the definite integral can be calculated:
\[\begin{array}{rcl}
\displaystyle \int_{a}^{b} f(x) \,\dd x&=& F(b) - F(a)\\
&&\phantom{xxx}\blue{\text{definition of a definite integral}}\\
\displaystyle \int_{-4}^{4} 7 x \,\dd x&=&\displaystyle \left(\frac{7}{2} (4)^2\right) - \left(\frac{7}{2} (-4)^2\right) \\
&&\phantom{xxx}\blue{\text{substituted the boundary values into the antiderivative}}\\
&=&\displaystyle56-56\\
&&\phantom{xxx}\blue{\text{simplified}}\\
&=&\displaystyle 0\\
&&\phantom{xxx}\blue{\text{simplified}}
\end{array}\]
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.