Differential equations and Laplace transforms: Laplace-transformations
Convolution
The inverse Laplace transform of the product of the Laplace transforms of two functions #f# and #g# is a convolution of the functions #f# and #g#. Before dealing with this result, we define the convolution of two functions.
Convolution Let #f# and #g# be two functions defined on #\ivco{0}{\infty}#. The convolution product or just convolution, of #f# and #g#, indicated by #f\ast g#, is the function on #\ivco{0}{\infty}# given by the rule \[( f\ast g) (t) = \int_0^t f(u)\cdot g(t-u)\,\dd u\]
The convolution product has the following properties in common with the ordinary product:
Calculation rules for convolutions
\[\begin{array}{lcrcl}\color{blue}{\text{commutativity:}}&\phantom{x}& f\ast g &=& g\ast f\\\color{blue}{\text{associativity:}}&\phantom{x}&(f\ast g)\ast h&=& f\ast (g\ast h)\\\color{blue}{\text{distributivity:}}&\phantom{x}& f\ast (g+ h)&=&f\ast g+f \ast h\end{array}\]
The following theorem says that the Laplace transform of a convolution in the #t#-domain carries over to an ordinary product into #s#-domain.
Convolution theorem The Laplace transformation #\mathcal{L}# satisfies the following equality for all piece-wise continuous functions #f# and #g# on #\ivco{0}{\infty}# whose Laplace transforms are defined on #\ivco{a}{\infty}#. \[ \mathcal{L}(f\ast g) ={\mathcal L}(f) \cdot {\mathcal L}(g)\phantom{xx} \text{ on }\phantom{xx}\ivco{a}{\infty} \]
Determine the convolution product of #f(t) = \e^{2 t}# and #g(t) = t^2# using the Laplace transform.
For starters, we determine #\laplace{(f)}# and #\laplace{(g)}# using the special cases of the Calculation rules for Laplace transforms:
\[\begin{array}{rclcl} \laplace{(f)}(s) &=& \laplace{(\e^{2 t})}(s) &=& \displaystyle {{1}\over{s-2}} \\
\laplace{(g)}(s) &=& \laplace{(t^2)}(s) &=& \displaystyle {{2}\over{s^3}} \\
\end{array}\]
We now complete the calculation with the aid of the Convolution theorem and the Inverse Laplace transforms of rational functions: \[\begin{array}{rclcl}(f\ast g) (t) &=&\displaystyle \laplace^{-1}{\left(\laplace{f}\cdot \laplace{g}\right)}(t) \\
&&\phantom{xx}\color{blue}{\text{Convolution theorem}}\\
&=&\displaystyle \laplace^{-1}{\left({{1}\over{s-2}}\cdot {{2}\over{s^3}}\right)}(t) \\
&&\phantom{xx}\color{blue}{\text{calculated above}}\\
&=&\displaystyle \laplace^{-1}{\left(-{{1}\over{4\cdot s}}-{{1}\over{2\cdot s^2}}-{{1}\over{s^3}}+{{1}\over{4\cdot \left(s-2\right)}}\right)}(t) \\
&&\phantom{xx}\color{blue}{\text{partial fraction decomposition}}\\
&=& \mathcal{L}^{-1}\left( -{{1}\over{4\cdot s}} \right)(t)+\mathcal{L}^{-1}\left( -{{1}\over{2\cdot s^2}} \right)(t)+\mathcal{L}^{-1}\left( -{{1}\over{s^3}} \right)(t)+\mathcal{L}^{-1}\left( {{1}\over{4\cdot \left(s-2\right)}} \right) (t) \\
&&\phantom{xx}\color{blue}{\text{linearity of }\mathcal{L}^{-1}}\\
&=& \displaystyle {{\euler^{2\cdot t}}\over{4}}-{{t^2}\over{2}}-{{t}\over{2}}-{{1}\over{4}} \\
&&\phantom{xx}\color{blue}{\text{known inverse Laplace transforms}}\\
\end{array}\]
Or visit omptest.org if jou are taking an OMPT exam.