Orthogonal and symmetric maps: Symmetric maps
Connection with symmetric matrices
The name symmetric for a linear map #L:V\to V# on a finite dimensional vector space #V# has to do with the matrix representation of #L#. We will use the following theorem to make the connection with matrices.
Characterizations of symmetryFor each linear map #L:V\rightarrow V#on a finite-dimensional inner product space #V# the following statements are equivalent:
- #L:V\rightarrow V# is symmetric.
- For each orthonormal system #\vec{a}_1,\ldots ,\vec{a}_n# in #V# we have #\dotprod{( L\vec{a}_i)}{\vec{a}_j}=\dotprod{\vec{a}_i }{(L \vec{a}_j)}# for all #i,j#.
- There is an orthonormal basis #\vec{a}_1,\ldots ,\vec{a}_m# of #V# with the property that #\dotprod{(L\vec{a}_i)}{ \vec{a}_j}=\dotprod{\vec{a}_i }{(L\vec{a}_j)}# for all #i,j#.
- There is an orthonormal basis #\vec{a}_1,\ldots ,\vec{a}_m# of #V# with the property that #\dotprod{(L\vec{a}_i)}{ \vec{a}_j}=\dotprod{\vec{a}_i }{(L\vec{a}_j)}# for all #i,j# with #i\lt j#.
Here is the link between symmetric maps and symmetric matrices.
Symmetric maps and matrices
Let #V# be a finite-dimensional real inner product space and #\alpha# an orthonormal basis of #V#. The linear map #L:V\rightarrow V# is symmetric if and only if the matrix #L_\alpha# of #L# relative to #\alpha# is symmetric.
#a =# #{3}#
In view of statement 4 of the theorem Characterizations of symmetry, it suffices to verify that \(\dotprod{(L({1}))}{{x}}= \dotprod{{1}}{(L({x}))}\). We work out this equation as follows
\[\begin{array}{rcl} \dotprod{(-8 + 3 x )}{{x}} &=& \dotprod{{1}}{(a+5 x)}\\&&\phantom{xx}\color{blue}{\text{mapping rule of }L\text{ used}}\\ (-8)\cdot(\dotprod{1}{x})+3 \cdot(\dotprod{x}{x}) &=& a\cdot\dotprod{1}{1}+5\cdot(\dotprod{1}{x})\\&&\phantom{xx}\color{blue}{\text{bilinearity of inner product}}\\
3 &=&a\\&&\phantom{xx}\color{blue}{\text{orthonormality of the basis}}\\
\end{array}\] We conclude that #a = 3#.
In view of statement 4 of the theorem Characterizations of symmetry, it suffices to verify that \(\dotprod{(L({1}))}{{x}}= \dotprod{{1}}{(L({x}))}\). We work out this equation as follows
\[\begin{array}{rcl} \dotprod{(-8 + 3 x )}{{x}} &=& \dotprod{{1}}{(a+5 x)}\\&&\phantom{xx}\color{blue}{\text{mapping rule of }L\text{ used}}\\ (-8)\cdot(\dotprod{1}{x})+3 \cdot(\dotprod{x}{x}) &=& a\cdot\dotprod{1}{1}+5\cdot(\dotprod{1}{x})\\&&\phantom{xx}\color{blue}{\text{bilinearity of inner product}}\\
3 &=&a\\&&\phantom{xx}\color{blue}{\text{orthonormality of the basis}}\\
\end{array}\] We conclude that #a = 3#.
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.