Inner Product Spaces: Orthonormal systems
The notion of orthonormal system
Of particular importance to the study of inner product spaces are vectors that are mutually perpendicular.
Orthogonal and orthonormal systems
Let #\vec{v}_1,\ldots ,\vec{v}_n# be a set of vectors of an inner product space #V#.
- The system is called orthogonal if for #1\leq i, j\leq n# with \( i\neq j\) we have
\[ \dotprod{\vec{v}_i}{\vec{v}_j}=0\] - The system is called orthonormal if for #1\leq i, j\leq n# we have \[
\dotprod{\vec{v}_i}{\vec{v}_j}=\left\{\,\begin{array}{l}
0\ \text{if}\ i\neq j\\
1\ \text{if}\ i=j\
\end{array}\right.
\]
If, in addition, the system #\vec{v}_1,\ldots ,\vec{v}_n# is a basis for #V#, we speak of an orthonormal basis of #V#.
Consider the inner product space of polynomial functions of degree at most #1# (that is, linear functions) on the interval #\ivcc{0}{3}# with inner product of functions given by \(\dotprod{f}{g} = \int_{0}^{3} f(x)\cdot {g(x)}\,\dd x \).
Determine an orthogonal basis for the space consisting of two functions #f# and #g# of degree #1#, that is, of the form \[ f(x)=a+b\cdot x\quad\text{ and }\quad g(x)=c+d\cdot x\]
for suitable numbers #a#, #b#, #c# and #d# with #b\ne0# and #d\ne 0#.
Give your answer in the form of a list.
Determine an orthogonal basis for the space consisting of two functions #f# and #g# of degree #1#, that is, of the form \[ f(x)=a+b\cdot x\quad\text{ and }\quad g(x)=c+d\cdot x\]
for suitable numbers #a#, #b#, #c# and #d# with #b\ne0# and #d\ne 0#.
Give your answer in the form of a list.
#\rv{f(x),g(x)}=# #\rv{1+x,1-{{5}\over{9}} x}#
Other answers are possible.
To achieve orthogonality of #f# and #g# we need #\dotprod{f}{g}=0#. Writing out this inner product gives \[\begin{array}{rcl}
\dotprod{f}{g}&=&\displaystyle \int_{0}^{3}f(x)\cdot g(x) \, \dd x \\
&&\phantom{xx}\color{blue}{\text{definition of inner product of functions}}\\
&=&\displaystyle \int_{0}^{3} (a+bx)\cdot(c+dx)\, \dd x \\
&&\phantom{xx}\color{blue}{\text{functions rules of }f(x)\text{ and }g(x)\text{ substituted}}\\
&=&\displaystyle \int_{0}^{3}\left( ac + (ad+bc)x+bdx^2\right)\, \dd x \\
&&\phantom{xx}\color{blue}{\text{expanded}}\\
&=&\displaystyle \left[acx+\frac{ad+bc}{2}x^2+\frac{bd}{3}x^3 \right]_{0}^{3}\\
&&\phantom{xx}\color{blue}{\text{antiderivative taken}}\\
&=&\displaystyle 3 a c+{{9 \left(a d+b c\right)}\over{2}}+9 b d\\
&&\phantom{xx}\color{blue}{\text{boundary values used}}
\end{array}\] If we equate this to #0#, we get an equation with #4# unknowns. For convenience we take #a=1#, #b=1#, #c=1#, and substitute these values into the equation. We then infer what the value of #d# should be for these values of #a#, #b#, #c#.
\[\begin{array}{rcl}
\displaystyle 3 a c+{{9 \left(a d+b c\right)}\over{2}}+9 b d&=&\displaystyle 0\\
&&\phantom{xx}\color{blue}{\text{equation set up}}\\
\displaystyle3+{{9\cdot \left(d+1\right)}\over{2}}+9\cdot d&=&\displaystyle 0\\
&&\phantom{xx}\color{blue}{\text{values for }a,b\text{, and }c\text{ substituted}}\\
\displaystyle {{27\cdot d}\over{2}}+{{15}\over{2}} &=&\displaystyle 0\\
&&\phantom{xx}\color{blue}{\text{left-hand side simplified}}\\
d&=&\displaystyle-{{5}\over{9}}\\
&&\phantom{xx}\color{blue}{\text{solved}}
\end{array}\] Substituting the values found for #a#, #b#, #c#, #d#, we find the polynomials #f(x) = 1+x# and #g(x) =1-{{5}\over{9}} x#.
Other answers are possible.
To achieve orthogonality of #f# and #g# we need #\dotprod{f}{g}=0#. Writing out this inner product gives \[\begin{array}{rcl}
\dotprod{f}{g}&=&\displaystyle \int_{0}^{3}f(x)\cdot g(x) \, \dd x \\
&&\phantom{xx}\color{blue}{\text{definition of inner product of functions}}\\
&=&\displaystyle \int_{0}^{3} (a+bx)\cdot(c+dx)\, \dd x \\
&&\phantom{xx}\color{blue}{\text{functions rules of }f(x)\text{ and }g(x)\text{ substituted}}\\
&=&\displaystyle \int_{0}^{3}\left( ac + (ad+bc)x+bdx^2\right)\, \dd x \\
&&\phantom{xx}\color{blue}{\text{expanded}}\\
&=&\displaystyle \left[acx+\frac{ad+bc}{2}x^2+\frac{bd}{3}x^3 \right]_{0}^{3}\\
&&\phantom{xx}\color{blue}{\text{antiderivative taken}}\\
&=&\displaystyle 3 a c+{{9 \left(a d+b c\right)}\over{2}}+9 b d\\
&&\phantom{xx}\color{blue}{\text{boundary values used}}
\end{array}\] If we equate this to #0#, we get an equation with #4# unknowns. For convenience we take #a=1#, #b=1#, #c=1#, and substitute these values into the equation. We then infer what the value of #d# should be for these values of #a#, #b#, #c#.
\[\begin{array}{rcl}
\displaystyle 3 a c+{{9 \left(a d+b c\right)}\over{2}}+9 b d&=&\displaystyle 0\\
&&\phantom{xx}\color{blue}{\text{equation set up}}\\
\displaystyle3+{{9\cdot \left(d+1\right)}\over{2}}+9\cdot d&=&\displaystyle 0\\
&&\phantom{xx}\color{blue}{\text{values for }a,b\text{, and }c\text{ substituted}}\\
\displaystyle {{27\cdot d}\over{2}}+{{15}\over{2}} &=&\displaystyle 0\\
&&\phantom{xx}\color{blue}{\text{left-hand side simplified}}\\
d&=&\displaystyle-{{5}\over{9}}\\
&&\phantom{xx}\color{blue}{\text{solved}}
\end{array}\] Substituting the values found for #a#, #b#, #c#, #d#, we find the polynomials #f(x) = 1+x# and #g(x) =1-{{5}\over{9}} x#.
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.