Inner Product Spaces: Orthonormal systems
Properties of orthonormal systems
We discuss some properties of orthonormal systems of vectors.
Properties of orthonormal systems of vectors
Let #V# be an inner product space and #\vec{x}# a vector of #V#.
- Orthonormal systems in #V# are linearly independent.
- If #\basis{\vec{a}_1,\ldots ,\vec{a}_n}# is an orthonormal basis of #V#, then the coordinates of #\vec{x}# with respect to this basis are, successively, #\dotprod{\vec{x}}{\vec{a}_1}, \ldots , \dotprod{\vec{x}}{\vec{a}_n}#: \[\vec{x}=(\dotprod{\vec{x}}{\vec{a}_1})\vec{a}_1+\cdots+(\dotprod{\vec{x}}{\vec{a}_n})\vec{a}_n\]
- The length of #\vec{x}# is equal to the length of the coordinate vector of #\vec{x}# relative to the standard inner product:
\[\norm{\vec{x}}^2 =\left(\dotprod{\vec{x}}{\vec{a}_1}\right)^2 + \cdots + \left(\dotprod{\vec{x}}{\vec{a}_n}\right)^2\]
The following statement is of interest for computing inner products if we have an orthonormal basis at our disposal.
From inner product to standard inner productLet #\basis{\vec{e}_1,\ldots ,\vec{e}_n}# be an orthonormal basis for an inner product space #V#, and let
\[\vec{x}=\sum_{i=1}^n x_i\vec{e}_i,\qquad \vec{y}=\sum_{j=1}^n y_j\vec{e}_j \] be vectors of #V#, written as linear combinations of the basis vectors. Then the inner product of #\vec{x}# and #\vec{y}# can be expressed as follows:\[\dotprod{\vec{x}}{\vec{y}}=\sum_{i=1}^n x_i\cdot y_i\]
We consider the vector space #{\mathbb{R}^3}# with the standard inner product. Suppose that the following orthonormal basis is given.
\[\begin{array}{rll}
\displaystyle \vec{v}_1&=&\displaystyle \rv{ {{1}\over{\sqrt{5}}} , 0 , {{2}\over{\sqrt{5}}} } \\
\vec{v}_2&=&\displaystyle \rv{ -{{2}\over{\sqrt{5}}} , 0 , {{1}\over{\sqrt{5}}} } \\
\vec{v}_3&=&\displaystyle \rv{ 0 , 1 , 0 }
\end{array}\]
Determine the coordinate vector #\vec{c}=\rv{c_1,c_2,c_3}# with respect to the given basis of the vector
\[
\vec{x}=\rv{ 2 , 3 , 4 }
\]
\[\begin{array}{rll}
\displaystyle \vec{v}_1&=&\displaystyle \rv{ {{1}\over{\sqrt{5}}} , 0 , {{2}\over{\sqrt{5}}} } \\
\vec{v}_2&=&\displaystyle \rv{ -{{2}\over{\sqrt{5}}} , 0 , {{1}\over{\sqrt{5}}} } \\
\vec{v}_3&=&\displaystyle \rv{ 0 , 1 , 0 }
\end{array}\]
Determine the coordinate vector #\vec{c}=\rv{c_1,c_2,c_3}# with respect to the given basis of the vector
\[
\vec{x}=\rv{ 2 , 3 , 4 }
\]
#\vec{c}=# #\rv{2\sqrt{5},0,3}#
The given basis is orthonormal. According to the Properties of orthonormal systems of vectors, the coordinates of a vector #\vec{x}# with respect to an orthonormal basis equal the dot products of #\vec{x}# with the basis vectors. We calculate each of these inner products individually.
\[\begin{array}{rcl}
c_1&=&\displaystyle\dotprod{\vec{v}_1}{\vec{x}}\\
&&\phantom{xx}\color{blue}{\text{theorem}}\\
&=&\displaystyle\dotprod{\rv{ {{1}\over{\sqrt{5}}} , 0 , {{2}\over{\sqrt{5}}} } }{\rv{ 2 , 3 , 4 } }\\
&&\phantom{xx}\color{blue}{\text{explicit vectors filled in}}\\
&=&\displaystyle\left({{1}\over{\sqrt{5}}}\cdot2\right)+\left(0\cdot 3\right)+\left({{2}\over{\sqrt{5}}}\cdot4\right)\\
&&\phantom{xx}\color{blue}{\text{definition standard inner product}}\\
&=&\displaystyle2\sqrt{5}\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
\[\begin{array}{rcl}
c_2&=&\displaystyle\dotprod{\vec{v}_2}{\vec{x}}\\
&&\phantom{xx}\color{blue}{\text{theorem}}\\
&=&\displaystyle\dotprod{\rv{ -{{2}\over{\sqrt{5}}} , 0 , {{1}\over{\sqrt{5}}} } }{\rv{ 2 , 3 , 4 } }\\
&&\phantom{xx}\color{blue}{\text{explicit vectors filled in}}\\
&=&\displaystyle\left(-{{2}\over{\sqrt{5}}}\cdot2\right)+\left(0\cdot 3\right)+\left({{1}\over{\sqrt{5}}}\cdot4\right)\\
&&\phantom{xx}\color{blue}{\text{definition standard inner product}}\\
&=&\displaystyle0\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
\[\begin{array}{rcl}
c_3&=&\displaystyle\dotprod{\vec{v}_3}{\vec{x}}\\
&&\phantom{xx}\color{blue}{\text{theorem}}\\
&=&\displaystyle \dotprod{\rv{ 0 , 1 , 0 } }{\rv{ 2 , 3 , 4 } }\\
&&\phantom{xx}\color{blue}{\text{explicit vectors filled in}}\\
&=&\displaystyle\left(0\cdot2\right)+\left(1\cdot 3\right)+\left(0\cdot4\right)\\
&&\phantom{xx}\color{blue}{\text{definition standard inner product}}\\
&=&\displaystyle3\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
So the coordinate vector #\vec{c}# is given by #\rv{2\sqrt{5},0,3}#.
The given basis is orthonormal. According to the Properties of orthonormal systems of vectors, the coordinates of a vector #\vec{x}# with respect to an orthonormal basis equal the dot products of #\vec{x}# with the basis vectors. We calculate each of these inner products individually.
\[\begin{array}{rcl}
c_1&=&\displaystyle\dotprod{\vec{v}_1}{\vec{x}}\\
&&\phantom{xx}\color{blue}{\text{theorem}}\\
&=&\displaystyle\dotprod{\rv{ {{1}\over{\sqrt{5}}} , 0 , {{2}\over{\sqrt{5}}} } }{\rv{ 2 , 3 , 4 } }\\
&&\phantom{xx}\color{blue}{\text{explicit vectors filled in}}\\
&=&\displaystyle\left({{1}\over{\sqrt{5}}}\cdot2\right)+\left(0\cdot 3\right)+\left({{2}\over{\sqrt{5}}}\cdot4\right)\\
&&\phantom{xx}\color{blue}{\text{definition standard inner product}}\\
&=&\displaystyle2\sqrt{5}\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
\[\begin{array}{rcl}
c_2&=&\displaystyle\dotprod{\vec{v}_2}{\vec{x}}\\
&&\phantom{xx}\color{blue}{\text{theorem}}\\
&=&\displaystyle\dotprod{\rv{ -{{2}\over{\sqrt{5}}} , 0 , {{1}\over{\sqrt{5}}} } }{\rv{ 2 , 3 , 4 } }\\
&&\phantom{xx}\color{blue}{\text{explicit vectors filled in}}\\
&=&\displaystyle\left(-{{2}\over{\sqrt{5}}}\cdot2\right)+\left(0\cdot 3\right)+\left({{1}\over{\sqrt{5}}}\cdot4\right)\\
&&\phantom{xx}\color{blue}{\text{definition standard inner product}}\\
&=&\displaystyle0\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
\[\begin{array}{rcl}
c_3&=&\displaystyle\dotprod{\vec{v}_3}{\vec{x}}\\
&&\phantom{xx}\color{blue}{\text{theorem}}\\
&=&\displaystyle \dotprod{\rv{ 0 , 1 , 0 } }{\rv{ 2 , 3 , 4 } }\\
&&\phantom{xx}\color{blue}{\text{explicit vectors filled in}}\\
&=&\displaystyle\left(0\cdot2\right)+\left(1\cdot 3\right)+\left(0\cdot4\right)\\
&&\phantom{xx}\color{blue}{\text{definition standard inner product}}\\
&=&\displaystyle3\\
&&\phantom{xx}\color{blue}{\text{simplified}}\\
\end{array}\]
So the coordinate vector #\vec{c}# is given by #\rv{2\sqrt{5},0,3}#.
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.