Linear maps: Matrices of Linear Maps
Determining the matrix of a linear map
As a result of the theorem Linear map determined by the image of basis a linear map from #\mathbb{R}^n# to #\mathbb{R}^m# is uniquely determined by the images of a basis #\basis{\vec{a}_1,\ldots ,\vec{a}_n}# for #\mathbb{R}^n#. If this basis is the standard basis #\basis{\vec{e}_1,\ldots,\vec{e}_n}#, then we can write down the corresponding matrix immediately using the theorem Linear maps in coordinate space defined by matrices. But if the basis differs from the standard basis, we have to perform some calculations first. These calculations are based on the following technique.
Matrix determination by row reduction Let #L:\mathbb{R}^n\to\mathbb{R}^m# be a linear map and #\alpha=\basis{\vec{a}_1,\ldots,\vec{a}_n}# a basis for #\mathbb{R}^n#. Form the #(n\times(n+m))#-matrix
\[\matrix{\vec{a}_1& L( \vec{a}_1)\\ \vec{a}_2& L( \vec{a}_2)\\ \vdots&\vdots\\ \vec{a}_n& L( \vec{a}_n)}\]
If we bring this matrix to the reduced echelon form, then the identity matrix appears on the left while the images of the standard basis vectors under #L# appear on the right (as row vectors). In other words, the #(n\times m)#-submatrix on the right is the transposed of #L_{\varepsilon}#.
\[\begin{array}{rcl}
L( \rv{ 1 , 1 , 0 } )&=&\rv{ 1 , 0 , 1 } \\ L( \rv{ 3 , 2 , 0 } )&=&\rv{ 2 , 0 , 3 } \\ L(\rv{ 0 , -2 , 1 } )&=&\rv{ -2 , -1 , 1 } \end{array}
\]
Determine the matrix #L_{\varepsilon}# of #L# with respect to the standard basis #\varepsilon=\basis{\vec{e}_1,\vec{e}_2,\vec{e}_3}#.
In terms of matrices, the conditions on \(L_{\varepsilon}\) can be written as
\[ \matrix{1 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & -2 & 1 \\ }\, L_{\varepsilon}^\top = \matrix{1 & 0 & 1 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \\ }\] wherein #L_{\varepsilon}^\top# is the transpose of #L_{\varepsilon}#. We find #L_{\varepsilon}^\top# by performing row reduction operations on the matrix
\[ \left(\left.\begin{array}{ccc}1 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & -2 & 1 \end{array}\ \right|\begin{array}{ccc}1 & 0 & 1 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{array}\right)\] until it obtains the reduced echelon form:
\[\begin{array}[t]{ll}
\left(\left.\begin{array}{ccc}1 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & -2 & 1 \end{array}\ \right|\begin{array}{ccc}1 & 0 & 1 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{array}\right)
&
\begin{array}[t]{ll} \sim\left(\begin{array}{rrr|rrr} 3 & 2 & 0 & 2 & 0 & 3 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & -2 & 1 & -2 & -1 & 1 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & {{2}\over{3}} & 0 & {{2 }\over{3}} & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & -2 & 1 & -2 & -1 & 1 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & {{2}\over{3}} & 0 & {{2}\over{3}} & 0 & 1 \\ 0 & {{1}\over{3}} & 0 & {{1}\over{3}} & 0 & 0 \\ 0 & -2 & 1 & -2 & -1 & 1 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & {{2}\over{3}} & 0 & {{2}\over{3}} & 0 & 1 \\ 0 & -2 & 1 & -2 & -1 & 1 \\ 0 & {{1}\over{3}} & 0 & {{1 }\over{3}} & 0 & 0 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & {{2}\over{3}} & 0 & {{2}\over{ 3}} & 0 & 1 \\ 0 & 1 & -{{1}\over{2}} & 1 & {{1}\over{2}} & -{{1 }\over{2}} \\ 0 & {{1}\over{3}} & 0 & {{1}\over{3}} & 0 & 0 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & 0 & {{1}\over{3}} & 0 & -{{1}\over{3}} & {{4}\over{3}} \\ 0 & 1 & -{{1}\over{2}} & 1 & {{1}\over{2}} & -{{1}\over{2}} \\ 0 & {{1}\over{3}} & 0 & {{1}\over{3}} & 0 & 0 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & 0 & {{1}\over{3}} & 0 & -{{1}\over{3}} & {{4}\over{3}} \\ 0 & 1 & -{{1 }\over{2}} & 1 & {{1}\over{2}} & -{{1}\over{2}} \\ 0 & 0 & {{1 }\over{6}} & 0 & -{{1}\over{6}} & {{1}\over{6}} \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & 0 & {{1}\over{3}} & 0 & -{{1}\over{3}} & {{4}\over{3}} \\ 0 & 1 & -{{ 1}\over{2}} & 1 & {{1}\over{2}} & -{{1}\over{2}} \\ 0 & 0 & 1 & 0 & -1 & 1 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -{{1}\over{2 }} & 1 & {{1}\over{2}} & -{{1}\over{2}} \\ 0 & 0 & 1 & 0 & -1 & 1 \end{array}\right) & \\\\ \sim\left(\begin{array}{rrr|rrr} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{array}\right) \end{array}
\end{array}
\] The #(3\times 3)#-submatrix on the right is equal to
\[L_{\varepsilon}^\top = \matrix{0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \\ }\] so the answer is:
\[L_{\varepsilon} = \matrix{0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \\ }\]
Or visit omptest.org if jou are taking an OMPT exam.